Abstract

Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties, have been studied in the literature with the help of generating functions and their functional equations. In this paper, we define the generalized (p,q)-Bernoulli-Fibonacci and generalized (p,q)-Bernoulli-Lucas polynomials and numbers by using the (p,q)-Bernoulli numbers, unified (p,q)-Bernoulli polynomials, h(x)-Fibonacci polynomials, and h(x)-Lucas polynomials. We also introduce the generalized bivariate (p,q)-Bernoulli-Fibonacci and generalized bivariate (p,q)-Bernoulli-Lucas polynomials and numbers. Then, we derive some properties of these newly established polynomials and numbers by using their generating functions with their functional equations. Finally, we provide some families of bilinear and bilateral generating functions for the generalized bivariate (p,q)-Bernoulli-Fibonacci polynomials.

  • Kapsamı

    Uluslararası

  • Type

    Hakemli

  • Index info

    WOS.SCI

  • Language

    English

  • Article Type

    None

  • Keywords

    q-Bernoulli numbers (p q)-Bernoulli numbers unified (p q)-Bernoulli polynomials h(x)-Fibonacci polynomials generating functions